Supplemental material for Multiscale Semi-Markov Dynamics for Intracortical Brain-Computer Interfaces
نویسندگان
چکیده
Our signal processing pipeline extracts two types of information from each electrode at 50Hz: a continuous signal (spike power) that gives the amount of power in the spike frequency range (Homer et al., 2013) and a discrete spike count (Masse et al., 2014). The models we present focus on continuous emissions and only use the spike power signal. In our offline comparisons, we did not use feature selection for these comparisons, instead using all spike power channels available.
منابع مشابه
Multiscale Semi-Markov Dynamics for Intracortical Brain-Computer Interfaces
Intracortical brain-computer interfaces (iBCIs) have allowed people with tetraplegia to control a computer cursor by imagining the movement of their paralyzed arm or hand. State-of-the-art decoders deployed in human iBCIs are derived from a Kalman filter that assumes Markov dynamics on the angle of intended movement, and a unimodal dependence on intended angle for each channel of neural activit...
متن کاملSemi-Supervised Classification for Intracortical Brain-Computer Interfaces Semi-Supervised Classification for Intracortical Brain-Computer Interfaces
Intracortical brain-computer interface (BCI) systems may one day allow paralyzed patients to interface with robotic arms or computer programs using their thoughts alone. However, a common and unaddressed issue with these systems is that due to small instabilities in the recorded signals, the decoding algorithms they rely upon must be retrained daily in a supervised manner. While this may be acc...
متن کاملSelecting and Extracting Effective Features of SSVEP-based Brain-Computer Interface
User interfaces are always one of the most important applied and study fields of information technology. The development and expansion of cognitive science studies and functionalization of its tools such as BCI1, as well as popularization of methods such as SSVEP2 to stimulate brain waves, have led to using these techniques every day, especially in appropriate solutions for physically and menta...
متن کاملDynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کامل